GENERAL DESCRIPTION

The Dimension CP-Series are cost optimized power supplies without compromising quality, reliability and performance. The most outstanding features of the CP20.241–R1/-R2 units are the high efficiency, electronic inrush current limitation, active PFC, wide operational temperature range and the extraordinary small size. The units include a decoupling MOSFET for building 1+1 or n+1 redundant power supply systems.

These redundancy power supplies come with three connection terminal options; screw terminals, spring-clamp terminals or plug connector terminals which allows replacement on an active application.

CP20.242-R2 version features an enhanced DC input voltage range and the CP20.241-R2-C1 is additionally equipped with conformal coated pc-boards.

With high immunity to transients and power surges, low electromagnetic emission, a DC-OK signal contact for remote monitoring, and a large international approval package, makes this unit suitable for nearly every application.

SHORT-FORM DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>DC 24V</td>
</tr>
<tr>
<td>Adjustment range</td>
<td>Nominal</td>
</tr>
<tr>
<td>Output current</td>
<td>24A</td>
</tr>
<tr>
<td></td>
<td>Below +45°C ambient</td>
</tr>
<tr>
<td></td>
<td>20A</td>
</tr>
<tr>
<td></td>
<td>At +60°C ambient</td>
</tr>
<tr>
<td></td>
<td>15A</td>
</tr>
<tr>
<td></td>
<td>At +70°C ambient</td>
</tr>
<tr>
<td>AC Input voltage</td>
<td>AC 100-240V</td>
</tr>
<tr>
<td></td>
<td>-15% / +10%</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>50-60Hz</td>
</tr>
<tr>
<td></td>
<td>±6%</td>
</tr>
<tr>
<td>AC Input current</td>
<td>4.28 / 2.25A</td>
</tr>
<tr>
<td></td>
<td>At 120 / 230Vac</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.99 / 0.98</td>
</tr>
<tr>
<td></td>
<td>At 120 / 230Vac</td>
</tr>
<tr>
<td>Input voltage DC</td>
<td>DC 110-150V / 110-300V</td>
</tr>
<tr>
<td>Input current DC</td>
<td>4.64A / 1.66A</td>
</tr>
<tr>
<td>AC Inrush current</td>
<td>1.0 / 4.5Apk</td>
</tr>
<tr>
<td>Efficiency</td>
<td>93.8 / 95.2%</td>
</tr>
<tr>
<td></td>
<td>At 120 / 230Vac</td>
</tr>
<tr>
<td>Losses</td>
<td>31.7 / 24.2W</td>
</tr>
<tr>
<td></td>
<td>At 120 / 230Vac</td>
</tr>
<tr>
<td>Hold-up time</td>
<td>32 / 32ms</td>
</tr>
<tr>
<td></td>
<td>At 120 / 230Vac</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40°C to +70°C</td>
</tr>
<tr>
<td>Size (w x h x d)</td>
<td>48x124x127mm</td>
</tr>
<tr>
<td></td>
<td>Without DIN-rail and</td>
</tr>
<tr>
<td></td>
<td>plug connectors</td>
</tr>
<tr>
<td>Weight</td>
<td>830g / 1.83lb</td>
</tr>
<tr>
<td></td>
<td>CP20.241-R1</td>
</tr>
<tr>
<td></td>
<td>850g / 1.87lb</td>
</tr>
<tr>
<td></td>
<td>CP20.24x-R2</td>
</tr>
</tbody>
</table>

ORDER NUMBERS

- **Power Supplies**
 - CP20.241-R1: With quick-connect spring-clamp terminals
 - CP20.241-R2: With hot swappable plug connectors (preferred item)
 - CP20.242-R2: Enhanced DC-Input
 - CP20.241-R2-C1: With conformal coated pc boards

- **Mechanical Accessory**
 - ZM5.WALL: Wall mount bracket

MARKINGS

For details or a complete approval list see section 20.

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
INDEX

1. Intended Use ...4
2. Installation Requirements4
3. AC-Input...6
4. DC-Input...7
5. Input Inrush Current ...8
6. Output ...9
7. Hold-up Time...10
8. DC-OK Relay Contact ...11
9. Efficiency and Power Losses.........................12
10. Lifetime Expectancy ..13
11. MTBF ...13
12. Functional Diagram...14
13. Terminals and Wiring ..15
14. Replacing Units while the System is Running ..16
15. Front Side and User Elements17
16. EMC ...18
17. Environment ...19
18. Safety and Protection Features20
19. Dielectric Strength..21
20. Approvals..22
21. Other Fulfilled Standards...............................22
22. Physical Dimensions and Weight...................23
23. Accessories..25
23.1. ZM5.WALL – Wall/Panel Mount Bracket .25
24. Application Notes...26
24.1. Peak Current Capability26
24.2. Adjusting the Output Voltage27
24.3. Charging of Batteries28
24.4. Output Circuit Breakers28
24.5. Series Operation ..29
24.6. Parallel Use to Increase Output Power ...29
24.7. Parallel Use for Redundancy30
24.8. Operation on Two Phases31
24.9. Use in a Tightly Sealed Enclosure31
24.10. Mounting Orientations32

The information given in this document is correct to the best of our knowledge and experience at the time of
publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the
word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is
subject to revision. We therefore kindly ask you to always use the latest issue of this document.

No part of this document may be reproduced or utilized in any form without our prior permission in writing.

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output
load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.

www.pulspower.com Phone +49 89 9278 0 Germany
TERMINOLOGY AND ABBREVIATIONS

PE and PE symbol

PE is the abbreviation for Protective Earth and has the same meaning as the symbol ♂.

Earth, Ground

This document uses the term “earth” which is the same as the U.S. term “ground”.

T.B.D.

To be defined, value or description will follow later.

AC 230V

A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included.

E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

230Vac

A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.

50Hz vs. 60Hz

As long as not otherwise stated, AC 230V parameters are valid at 50Hz mains frequency.

may

A key word indicating flexibility of choice with no implied preference.

shall

A key word indicating a mandatory requirement.

should

A key word indicating flexibility of choice with a strongly preferred implementation.

1+1 Redundancy

Use of two identical power supplies in parallel to provide continued operation following most failures in a single power supply. The two power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements. E.g. two 20A power supplies are needed to achieve a 20A redundant system.

N+1 Redundancy

Use of three or more identical power supplies in parallel to provide continued operation following most failures in a single power supply. All power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements. E.g.: To achieve a 80A redundant system, five 20A power supplies are needed in a N+1 redundant system.
1. INTENDED USE

This device is designed for installation in an enclosure and is intended for the general professional use such as in industrial control, office, communication, and instrumentation equipment.

Do not use this power supply in equipment, where malfunction may cause severe personal injury or threaten human life.

2. INSTALLATION REQUIREMENTS

WARNING Risk of electrical shock, fire, personal injury or death.
- Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input block for earth connection and not one of the screws on the housing.
- Turn power off before working on the device. Protect against inadvertent re-powering.
- Make sure that the wiring is correct by following all local and national codes.
- Do not modify or repair the unit.
- Do not open the unit as high voltages are present inside.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

Obey the following installation requirements:
- This device may only be installed and put into operation by qualified personnel.
- Install the device in an enclosure providing protection against electrical, mechanical and fire hazards.
- The device is designed for use in pollution degree 2 areas in controlled environments.
- The enclosure of the device provides a degree of protection of IP20 according to IEC 60529.
- Mount the unit on a DIN-rail so that the input terminals are located on the bottom of the unit. For other mounting orientations see de-rating requirements in this document.
- The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid (e.g. cable conduits) by more than 15%!
- Keep the following installation clearances: 40mm on top, 20mm on the bottom, 5mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15mm in case the adjacent device is a heat source (Example: another power supply).
- Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, 75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C. Ensure that all strands of a stranded wire enter the terminal connection. Check also local codes and local requirements. In some countries local regulations might apply.
- This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunction should occur during installation or operation, immediately turn power off and send the device to the factory for inspection.
- The device is designed, tested and approved for branch circuits up to up to 30A (UL) or 32A (IEC) without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 10A B- or C-Characteristic to avoid a nuisance tripping of the circuit breaker.
- A disconnecting means shall be provided for the input of the power supply.
Notes for use in hazardous location areas:
The power supply is suitable for use in Class I Division 2 Groups A, B, C, D locations. See chapter 20 for details.

WARNING EXPLOSION HAZARDS!
Substitution of components may impair suitability for this environment. Do not disconnect the unit or operate the voltage adjustment unless power has been switched off or the area is known to be non-hazardous.
Wiring must be in accordance with Class I, Division 2 wiring methods of the National Electrical Code, NFPA 70, and in accordance with other local or national codes.
A suitable enclosure must be provided for the end product which has a minimum protection of IP54 and fulfils the requirements of the EN 60079-0.
3. AC-INPUT

The device is suitable to be supplied from TN-, TT- and IT mains networks with AC voltage. For suitable DC supply voltages see chapter 4.

<table>
<thead>
<tr>
<th>AC input</th>
<th>Nom. AC 100-240V</th>
<th>Continuous operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input range</td>
<td>Min. 85-264Vac</td>
<td>Continuous, for maximal 500ms (occasional)</td>
</tr>
<tr>
<td></td>
<td>Min. 264-300Vac</td>
<td></td>
</tr>
<tr>
<td>Allowed voltage L or N to earth</td>
<td>Max. 300Vac</td>
<td>Continuous, according to IEC 62477-1</td>
</tr>
<tr>
<td>Input frequency</td>
<td>Nom. 50–60Hz</td>
<td>±6%</td>
</tr>
<tr>
<td>Turn-on voltage</td>
<td>Typ. 82Vac</td>
<td>Steady-state value, see Fig. 3-1</td>
</tr>
<tr>
<td>Shut-down voltage</td>
<td>Typ. 72Vac</td>
<td>Steady-state value, see Fig. 3-1</td>
</tr>
<tr>
<td>External input protection</td>
<td>See recommendations in chapter 2.</td>
<td></td>
</tr>
</tbody>
</table>

AC 100V
- **Input current**: Typ. 5.17A
- **Power factor**: Typ. 0.996
- **Crest factor**: Typ. 1.65
- **Start-up delay**: Typ. 450ms
- **Rise time**: Typ. 145ms
- **Turn-on overshoot**: Max. 1000mV

AC 120V
- **Input current**: Typ. 4.28A
- **Power factor**: Typ. 0.996
- **Crest factor**: Typ. 1.63
- **Start-up delay**: Typ. 450ms
- **Rise time**: Typ. 145ms
- **Turn-on overshoot**: Max. 1000mV

AC 230V
- **Input current**: Typ. 2.25A
- **Power factor**: Typ. 0.980
- **Crest factor**: Typ. 1.63
- **Start-up delay**: Typ. 450ms
- **Rise time**: Typ. 145ms
- **Turn-on overshoot**: Max. 1000mV

Fig. 3-3 Input voltage range

Fig. 3-4 Power factor vs. output current

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
4. DC-INPUT

The device is suitable to be supplied from a DC input voltage. Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit.

Connect +pole to L, –pole to N and the PE terminal to an earth wire or to the machine ground.

DC input

<table>
<thead>
<tr>
<th>Nom. DC 110-150V ±20% for CP20.241-Rx</th>
<th>Nom. DC 110-300V ±20% for CP20.242-Rx</th>
</tr>
</thead>
</table>

DC input range

<table>
<thead>
<tr>
<th>Min. 88-180Vdc Continuous operation for CP20.241-Rx</th>
<th>Min. 88-360Vdc Continuous operation for CP20.242-Rx</th>
</tr>
</thead>
</table>

DC input current

<table>
<thead>
<tr>
<th>Typ. 4.64A At 110Vdc and 20A load current</th>
<th>Typ. 1.66A At 300Vdc and 20A load current</th>
</tr>
</thead>
</table>

Allowed Voltage (+) or (-) input to Earth

<table>
<thead>
<tr>
<th>Max. 375Vdc Continuous according to IEC 62477-1</th>
</tr>
</thead>
</table>

Turn-on voltage

<table>
<thead>
<tr>
<th>Typ. 80Vdc Steady state value</th>
</tr>
</thead>
</table>

Shut-down voltage

<table>
<thead>
<tr>
<th>Typ. 70Vdc Steady state value</th>
</tr>
</thead>
</table>

Fig. 4-1 Wiring for DC Input
5. **INPUT INRUSH CURRENT**

An active inrush limitation circuit limits the input inrush current after turn-on of the input voltage. The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>Max. 15A peak</td>
<td>12A peak</td>
<td>5.5A peak</td>
</tr>
<tr>
<td></td>
<td>Typ. 12A peak</td>
<td>10A peak</td>
<td>4.5A peak</td>
</tr>
<tr>
<td>Inrush energy</td>
<td>Max. 1A²s</td>
<td>1A²s</td>
<td>1A²s</td>
</tr>
</tbody>
</table>

Fig. 5-1 **Typical turn-on behavior at nominal load and 25°C ambient**
6. Output

The output provides a SELV/PELV/ES1 rated voltage, which is galvanically isolated from the input voltage. The output of the devices includes a decoupling MOSFET for building 1+1 or n+1 redundant power supply systems.

The device is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLCs (electric double layer capacitors or “UltraCaps”) with a capacitance > 1F are connected to the output, the unit might charge the capacitor in the HiccupPLUS mode.

The device is featured with a “soft output regulation characteristic” in order to achieve current share between multiple devices when they are connected in parallel. The “soft output regulation characteristic” regulates the output voltage in such a manner that the voltage at no load is approx. 4% higher than at nominal load.

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>Nom.</th>
<th>DC 24V</th>
<th>23.8 - 25.2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment range</td>
<td>Nom.</td>
<td>DC 24V</td>
<td>23.8 - 25.2V</td>
</tr>
<tr>
<td>Factory settings</td>
<td>Nom.</td>
<td>DC 24V</td>
<td>23.8 - 25.2V</td>
</tr>
<tr>
<td>Line regulation</td>
<td>Max.</td>
<td>10mV</td>
<td>85-300Vac</td>
</tr>
<tr>
<td>Load regulation</td>
<td>Typ.</td>
<td>1000mV</td>
<td>Static value, 0A → 20A; see Fig. 6-1</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>Max.</td>
<td>100mVpp</td>
<td>20Hz to 20MHz, 50Ohm</td>
</tr>
<tr>
<td>Output current</td>
<td>Nom.</td>
<td>24A</td>
<td>Below 45°C ambient temperature, see Fig. 17-1</td>
</tr>
<tr>
<td></td>
<td>Nom.</td>
<td>20A</td>
<td>At 60°C ambient temperature, see Fig. 17-1</td>
</tr>
<tr>
<td></td>
<td>Nom.</td>
<td>15A</td>
<td>At 70°C ambient temperature, see Fig. 17-1</td>
</tr>
<tr>
<td>Fuse breaking current</td>
<td>Typ.</td>
<td>60A</td>
<td>Up to 12ms once every five seconds, see Fig. 6-3.</td>
</tr>
<tr>
<td>Overload protection</td>
<td>Included</td>
<td>Electronically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur.</td>
<td></td>
</tr>
<tr>
<td>Overload behaviour</td>
<td>Continuous current</td>
<td>Output voltage > 13Vdc, see Fig. 6-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermittent current</td>
<td>Output voltage < 13Vdc, see Fig. 6-1</td>
<td></td>
</tr>
<tr>
<td>Overload/short-circuit current</td>
<td>Max.</td>
<td>29.8A</td>
<td>Continuous current, see Fig. 6-1</td>
</tr>
<tr>
<td></td>
<td>Typ.</td>
<td>29A</td>
<td>Intermittent current peak value for typ. 2s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load impedance 10mOhm, see Fig. 6-2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>9.8A</td>
<td>Discharge current of output capacitors is not included.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermittent current average value (R.M.S.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load impedance 10mOhm, see Fig. 6-2.</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>Typ.</td>
<td>8000µF</td>
<td>Included inside the power supply</td>
</tr>
<tr>
<td>Back-feeding loads</td>
<td>Max.</td>
<td>35V</td>
<td>The unit is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off. The absorbing energy can be calculated according to the built-in large sized output capacitor.</td>
</tr>
</tbody>
</table>

1) This current is also available for temperatures up to +70°C with a duty cycle of 10% and/or not longer than 1 minute every 10 minutes.
2) The fuse braking current is an enhanced transient current which helps to start heavy loads or to trip fuses on faulty output branches. The output voltage stays above 20V. See chapter 24.1 for additional measurements.
3) At heavy overloads (when output voltage falls below 13V), the power supply delivers continuous output current for 2s. After this, the output is switched off for approx. 18s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-2.
7. HOLD-UP TIME

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>100V</th>
<th>120V</th>
<th>230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold-up Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td>65ms</td>
<td>65ms</td>
<td>65ms</td>
</tr>
<tr>
<td>Min.</td>
<td>54ms</td>
<td>54ms</td>
<td>54ms</td>
</tr>
<tr>
<td>Typ.</td>
<td>32ms</td>
<td>32ms</td>
<td>32ms</td>
</tr>
<tr>
<td>Min.</td>
<td>24ms</td>
<td>24ms</td>
<td>24ms</td>
</tr>
</tbody>
</table>

Fig. 7-1 Hold-up time vs. input voltage

Fig. 7-2 Shut-down behavior, definitions

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
8. DC-OK RELAY CONTACT

This feature monitors the output voltage of the power supply in front of the decoupling device (see also chapter 12).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact closes</td>
<td>As soon as the output voltage reaches typ. 22Vdc.</td>
</tr>
<tr>
<td>Contact opens</td>
<td>As soon as the output voltage dips below 22Vdc.</td>
</tr>
<tr>
<td></td>
<td>Short dips will be extended to a signal length of 100ms. Dips shorter than 1ms will be ignored.</td>
</tr>
<tr>
<td>Switching hysteresis</td>
<td>1V</td>
</tr>
<tr>
<td>Contact ratings</td>
<td>Maximal 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A, resistive load</td>
</tr>
<tr>
<td></td>
<td>Minimal permissible load: 1mA at 5Vdc</td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>See dielectric strength table in chapter 19.</td>
</tr>
</tbody>
</table>

Fig. 8-1 DC-ok relay contact behavior

![DC-ok relay contact behavior diagram]

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
9. Efficiency and Power Losses

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Typ.</td>
<td>93.2%</td>
<td>93.8%</td>
</tr>
<tr>
<td></td>
<td>Typ.</td>
<td>93.1%</td>
<td>93.7%</td>
</tr>
</tbody>
</table>
| Average efficiency\)
| Typ. | 92.8% | 93.4% | 94.6% | 25% at 5A, 25% at 10A, 25% at 15A, 25% at 20A | |
| Power losses | Typ. | 3.9W | 3.5W | 3.3W | At 0A |
| | Typ. | 17.4W | 16.4W | 13.8W | At 10A |
| | Typ. | 35.0W | 31.7W | 24.2W | At 20A |
| | Typ. | 42.7W | 38.7W | 29.7W | At 24A (Power Boost) |

\)

The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 9-1 Efficiency vs. output current, typ.

Fig. 9-2 Losses vs. output current, typ.

Fig. 9-3 Efficiency vs. input voltage at 20A, typ.

Fig. 9-4 Losses vs. input voltage at 20A, typ.
10. **LIFETIME EXPECTANCY**

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor’s manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

<table>
<thead>
<tr>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime expectancy</td>
<td>117 000h</td>
<td>136 000h</td>
</tr>
<tr>
<td></td>
<td>331 000h</td>
<td>386 000h</td>
</tr>
<tr>
<td></td>
<td>40 000h</td>
<td>53 000h</td>
</tr>
<tr>
<td></td>
<td>114 000h</td>
<td>150 000h</td>
</tr>
<tr>
<td></td>
<td>16 000h</td>
<td>25 000h</td>
</tr>
<tr>
<td></td>
<td>44 000h</td>
<td>69 000h</td>
</tr>
</tbody>
</table>

11. **MTBF**

MTBF stands for **Mean Time Between Failure**, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h.

For these types of units the MTTF (Mean Time To Failure) value is the same value as the MTBF value.

<table>
<thead>
<tr>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF SN 29500, IEC 61709</td>
<td>387 000h</td>
<td>412 000h</td>
</tr>
<tr>
<td></td>
<td>723 000h</td>
<td>768 000h</td>
</tr>
<tr>
<td>MTBF MIL HDBK 217F</td>
<td>164 000h</td>
<td>169 000h</td>
</tr>
<tr>
<td></td>
<td>224 000h</td>
<td>231 000h</td>
</tr>
<tr>
<td></td>
<td>34 000h</td>
<td>36 000h</td>
</tr>
<tr>
<td></td>
<td>45 000h</td>
<td>47 000h</td>
</tr>
</tbody>
</table>
12. FUNCTIONAL DIAGRAM

Fig. 12-1 Functional diagram CP20.241-R1

Input Fuse PFC Converter Power Converter Output Filter Decoupling

Input Filter Input Rectifier Active Inrush Limiter Output Power Manager Output Over-Voltage Protection

Temperature Shutdown Output Voltage Monitor DC-ok Contact DC-ok LED

Output Voltage Regulator VOUT

Fig. 12-2 Functional diagram CP20.241-R2, CP20.242-R2 and CP20.241-R2-C1

Input Fuse PFC Converter Power Converter Output Filter Decoupling

Input Filter Input Rectifier Active Inrush Limiter Output Power Manager Output Over-Voltage Protection

Temperature Shutdown Output Voltage Monitor DC-ok Contact DC-ok LED

Output Voltage Regulator VOUT

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
13. TERMINALS AND WIRING

The terminals are IP20 Finger safe constructed and suitable for field- and factory wiring.

CP20.241-R1

<table>
<thead>
<tr>
<th>Type</th>
<th>Input</th>
<th>Output</th>
<th>DC-OK-Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wire</td>
<td>Quick-connect spring-clamp</td>
<td>Quick-connect spring-clamp</td>
<td>Push-in termination</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Max. 6mm²</td>
<td>Max. 6mm²</td>
<td>Max. 1.5mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>AWG 20-10</td>
<td>AWG 20-10</td>
<td>AWG 24-16</td>
</tr>
<tr>
<td>Max. wire diameter (including ferrules)</td>
<td>2.8mm</td>
<td>2.8mm</td>
<td>1.6mm</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>10mm / 0.4inch</td>
<td>10mm / 0.4inch</td>
<td>7mm / 0.28inch</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3 mm slotted to open the spring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CP20.241-R2, CP20.242-R2, CP20.241-R2-C1

<table>
<thead>
<tr>
<th>Type</th>
<th>Input</th>
<th>Output</th>
<th>DC-OK-Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wire</td>
<td>Plug connector with screw termination</td>
<td>Plug connector with screw termination</td>
<td>Plug connector with screw termination</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Max. 4mm²</td>
<td>Max. 6mm²</td>
<td>Max. 1.5mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>AWG 20-12</td>
<td>AWG 20-12</td>
<td>AWG 26-14</td>
</tr>
<tr>
<td>Max. wire diameter (including ferrules)</td>
<td>2.4mm</td>
<td>3.2mm</td>
<td>1.8mm</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>Max. 0.5Nm, 4.5lb-in</td>
<td>Max. 0.6Nm, 5.3lb-in</td>
<td>Max. 0.8Nm, 7lb-in</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>7mm / 0.28inch</td>
<td>12mm / 0.47inch</td>
<td>6mm / 0.24inch</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3.5mm slotted or cross-head No 2</td>
<td>3.5mm slotted or cross-head No 2</td>
<td>3.5mm slotted</td>
</tr>
<tr>
<td></td>
<td>Do not unplug the connectors more often than 20 times in total</td>
<td>Do not unplug the connectors more often than 20 times in total</td>
<td>Do not unplug the connectors more often than 20 times in total</td>
</tr>
</tbody>
</table>

Instructions for wiring:

a) Use appropriate copper cables that are designed for minimum operating temperatures of:
 - 60°C for ambient up to 45°C, 75°C for ambient up to 60°C and 90°C for ambient up to 70°C minimum.

b) Follow national installation codes and installation regulations!

c) Ensure that all strands of a stranded wire enter the terminal connection!

d) Unused terminal compartments should be securely tightened.

e) Ferrules are allowed and recommended.
14. REPLACING UNITS WHILE THE SYSTEM IS RUNNING

This feature is available only for the CP20.241-R2, CP20.242-R2 and CP20.241-R2-C1 units, which are equipped with hot-swappable plug connectors.

Replacement instructions (Example for left power supply):
- Switch-off circuit breaker (1a).
- Remove plug (2a).
- Remove plug (3a). The plug prevents the cables from shorting.
- Change power supply.
- Put the plug (3a) back in.
- Put the plug (2a) back in.
- Turn-on the circuit breaker (1a).
- The circuit is redundant again.

To replace the right power supply, repeat the process above using (1b), (2b) and (3b).
15. Front Side and User Elements

Fig. 15-1 Front side CP20.241-R1

Fig. 15-2 Front side
CP20.241-R2
CP20.242-R2
CP20.241-R2-C1

A **Input Terminals**
N, L Line input
PE (Protective Earth) input

B **Output Terminals**
+ Positive output
- Negative (return) output

C **Output voltage potentiometer**
See chapter 24.2.

D **DC-OK LED** (green)
On, when the output voltage is above 22V.

E **DC-OK Relay Contact**
The DC-OK relay contact is synchronized with the DC-OK LED.
See chapter 8 for details.
16. EMC

The EMC behavior of the device is designed for applications in industrial environment as well as in residential, commercial and light industry environments.

EMC Immunity

According to the generic standards EN 61000-6-1 and EN 61000-6-2.

- **Electrostatic discharge**
 - EN 61000-4-2
 - Contact discharge: 8kV
 - Air discharge: 15kV
- **Electromagnetic RF field**
 - EN 61000-4-3
 - 80MHz-2.7GHz: 20V/m
- **Fast transients (Burst)**
 - EN 61000-4-4
 - Input lines: 4kV
 - Output lines: 2kV
 - DC-OK signal (coupling clamp): 2kV
- **Surge voltage on input**
 - EN 61000-4-5
 - L → N: 2kV
 - L → PE, N → PE: 4kV
- **Surge voltage on output**
 - EN 61000-4-5
 - + → -: 1kV
 - + / - → PE: 2kV
- **Surge voltage on Signals**
 - EN 61000-4-5
 - DC-OK signal → PE: 1kV
- **Conducted disturbance**
 - EN 61000-4-6
 - 0.15-80MHz: 20V
- **Mains voltage dips**
 - EN 61000-4-11
 - 0% of 100Vac: 0V, 20ms
 - 40% of 100Vac: 40V, 200ms
 - 70% of 100Vac: 70V, 500ms
 - 0% of 200Vac: 0Vac, 20ms
 - 40% of 200Vac: 40Vac, 200ms
 - 70% of 200Vac: 70Vac, 500ms
- **Voltage interruptions**
 - EN 61000-4-11
 - 0% of 200Vac (0V): 5000ms
- **Voltage sags**
 - SEMI F47 0706
 - 50% of 120Vac: 60Vac, 200ms
 - 70% of 120Vac: 84Vac, 500ms
- **Powerful transients**
 - VDE 0160
 - Over entire load range: 750V, 0.3ms

Criterions:

- **A:** Power supply shows normal operation behavior within the defined limits.
- **C:** Temporary loss of function is possible. Device may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

EMC Emission

According to the generic standards EN 61000-6-3 and EN 61000-6-4.

- **Conducted emission**
 - EN 55011, EN 55015, EN 55022, FCC Part 15, CISPR 11, CISPR 22
 - IEC/CISPR 16-1-2, IEC/CISPR 16-2-1
 - 5dB higher than average limits for DC power port according EN 61000-6-3*)
- **Radiated emission**
 - EN 55011, EN 55022
 - Class B
- **Harmonic input current**
 - EN 55000-3-2
 - Class A equipment: fulfilled
 - Class C equipment: fulfilled in the load range from 8 to 24A
- **Voltage fluctuations, flicker**
 - EN 61000-3-3
 - Fulfilled, tested with constant current loads, non pulsing

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

*) Restrictions apply for applications in residential, commercial and light-industrial environments, where local DC power networks according to EN 61000-6-3 are involved. No restrictions for all kinds of industrial applications.

Switching Frequencies

- **PFC converter**
 - 100kHz
 - Fixed frequency
- **Main converter**
 - 80kHz to 140kHz
 - Output load dependent
- **Auxiliary converter**
 - 60kHz
 - Fixed frequency

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
17. ENVIRONMENT

Operational temperature
-40°C to +70°C (-40°F to 158°F)
Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit.

Storage temperature
-40°C to +85°C (-40°F to 185°F)
For storage and transportation.

Output de-rating
- 0.27A/°C Between +45°C and +60°C (113°F to 140°F)
- 0.5A/°C Between +60°C and +70°C (140°F to 158°F)
- 1.25A/1000m or 5°C/1000m For altitudes >2000m (6560ft), see Fig. 17-2
- 0.75A/5kPa or 3°C/5kPa For atmospheric pressures <80kPa, see Fig. 17-2

The de-rating is not hardware controlled. The customer has to take this into consideration to stay below the de-rated current limits in order not to overload the unit.

Humidity
5 to 95% r.h. According to IEC 60068-2-30
Do not energize while condensation is present.

Atmospheric pressure
110-47kPa See see Fig. 17-2 for details

Altitude
Up to 6000m (20 000ft) See see Fig. 17-2 for details

Over-voltage category
III According to IEC 60664-1 for altitudes up to 2000m
II According to IEC 60664-1, for altitudes between 2000 and 6000m and atmospheric pressures from 80-47kPa.

Degree of pollution
2 According to IEC 62477-1, not conductive

Vibration sinusoidal
2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g
2 hours / axis
According to IEC 60068-2-6

Shock
30g 6ms, 20g 11ms
3 bumps per direction, 18 bumps in total
Shock and vibration is tested in combination with DIN-Rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard orientation.

LABS compatibility
As a rule, only non-silicon precipitating materials are used. The unit conforms to the LABS criteria and is suitable for use in paint shops.

Corrosive gases
Tested according to ISA-71.04-1985, Severity Level G3 and IEC 60068-2-60 Test Ke Method 4 for a service life of minimum 10 years in these environments.

Audible noise
Some audible noise may be emitted from the power supply during no load, overload or short circuit.

Typical curves:

Fig. 17-1 Output current vs. ambient temp.

Fig. 17-2 Output current vs. altitude
18. Safety and Protection Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation resistance</td>
<td>Min. 500MΩhm At delivered condition between input and output, measured with 500Vdc</td>
</tr>
<tr>
<td></td>
<td>Min. 500MΩhm At delivered condition between input and PE, measured with 500Vdc</td>
</tr>
<tr>
<td></td>
<td>Min. 500MΩhm At delivered condition between output and PE, measured with 500Vdc</td>
</tr>
<tr>
<td></td>
<td>Min. 500MΩhm At delivered condition between output and DC-OK contacts, measured with 500Vdc</td>
</tr>
<tr>
<td>PE resistance</td>
<td>Max. 0.1Ωhm Resistance between PE terminal and the housing in the area of the DIN-rail mounting bracket.</td>
</tr>
<tr>
<td>Output over-voltage protection</td>
<td>Typ. 30.5Vdc Max 32Vdc In case of an internal defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart.</td>
</tr>
<tr>
<td>Class of protection</td>
<td>I According to IEC 61140 A PE (Protective Earth) connection is required</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 20 According to EN/IEC 60529</td>
</tr>
<tr>
<td>Over-temperature protection</td>
<td>Included Output shut-down with automatic restart. Temperature sensors are installed on critical components inside the unit and turn the unit off in safety critical situations, which can happen e.g. when ambient temperature is too high, ventilation is obstructed or the de-rating requirements are not followed. There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods.</td>
</tr>
<tr>
<td>Input transient protection</td>
<td>MOV (Metal Oxide Varistor) For protection values see chapter 16 (EMC).</td>
</tr>
<tr>
<td>Internal input fuse</td>
<td>Included Not user replaceable slow-blow high-braking capacity fuse</td>
</tr>
<tr>
<td>Touch current (leakage current)</td>
<td>Typ. 0.12mA / 0.31mA At 100Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Typ. 0.18mA / 0.45mA At 120Vac, 60Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Typ. 0.30mA / 0.76mA At 230Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Max. 0.16mA / 0.38mA At 110Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Max. 0.23mA / 0.55mA At 132Vac, 60Hz, TN-, TT-mains / IT-mains</td>
</tr>
<tr>
<td></td>
<td>Max. 0.39mA / 0.94mA At 264Vac, 50Hz, TN-, TT-mains / IT-mains</td>
</tr>
</tbody>
</table>

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
19. **Dielectric Strength**

The output voltage is floating and has no ohmic connection to the ground. Type and routine tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>A (s)</th>
<th>B (V)</th>
<th>C (V)</th>
<th>D (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type test</td>
<td>60</td>
<td>2500</td>
<td>3000</td>
<td>1000</td>
</tr>
<tr>
<td>Routine test</td>
<td>5</td>
<td>2500</td>
<td>2500</td>
<td>500</td>
</tr>
<tr>
<td>Field test</td>
<td>5</td>
<td>2000</td>
<td>2000</td>
<td>500</td>
</tr>
<tr>
<td>Cut-off current setting for field test</td>
<td>>10mA</td>
<td>>10mA</td>
<td>>20mA</td>
<td>>1mA</td>
</tr>
</tbody>
</table>

It is recommended that either the + pole, the – pole or any other part of the output circuit shall be connected to the earth/ground system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.

B*) When testing input to DC-OK ensure that the maximal voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.
20. APPROVALS

EC Declaration of Conformity

The CE mark indicates conformance with the
- EMC directive (available),
- Low-voltage directive (available) and the
- ATEX directive (planned)

IEC 60950-1, 2nd Edition planned

IECEE

CB SCHEME

IECEEx

CB Scheme, Information Technology Equipment

UL 508 planned

UL

US LISTED

IND. CONT. EQ.

US LISTED

IN. CONT. EQ.

Class I Div 2 pending

Boiling Location Class I Div 2 T4 Groups A,B,C,D systems;
U.S.A. (ANSI / ISA 12.12.01) and Canada (C22.2 No. 213)

EN 60079-0, EN 60079-7 ATEX

Approval for use in hazardous locations Zone 2 Category 3G.
Number of ATEX certificate: EPS 17 ATEX 1 089 X

IEC 60079-0, IEC 60079-7

IECEEx

Suitable for use in Class 1 Zone 2 Groups IIa, IIb and IIc locations.
Number of IECEx certificate: EPS 17.0046X

EAC TR Registration (only for CP20.241-R1 and CP20.241-R2)

EAC

Registration for the Eurasian Customs Union market
(Russia, Kazakhstan, Belarus)

21. OTHER FULFILLED STANDARDS

RoHS Directive

RoHS

REACH Directive

REACH

IEC/EN 61558-2-16 (Annex BB) Safety Isolating Transformer

Safety Isolating Transformers corresponding to Part 2-6 of the IEC/EN 61558
22. Physical Dimensions and Weight

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>48mm</td>
</tr>
<tr>
<td>Height</td>
<td>124mm</td>
</tr>
<tr>
<td>Depth</td>
<td>127mm</td>
</tr>
</tbody>
</table>

The DIN-rail height must be added to the unit depth to calculate the total required installation depth.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>830g / 1.83lb for CP20.241-R1</td>
</tr>
<tr>
<td></td>
<td>850g / 1.87lb for CP20.241-R2</td>
</tr>
</tbody>
</table>

DIN-Rail

Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.

Housing material

Body: Aluminium alloy

Cover: zinc-plated steel

Installation clearances

See chapter 2

Penetration protection

Small parts like screws, nuts, etc. with a diameter larger than 5mm

Fig. 22-1 Front view CP20.241-R1

![Front view CP20.241-R1](image1)

Fig. 22-2 Side view CP20.241-R1

![Side view CP20.241-R1](image2)
CP20.241-R1, CP20.241-R2, CP20.242-R2, CP20.241-R2-C1

24V, 20A, 480W, SINGLE PHASE

Fig. 22-3 Front view CP20.241-R2, CP20.242-R2, CP20.241-R2-C1

Fig. 22-4 Side view CP20.241-R2, CP20.242-R2, CP20.241-R2-C1

All dimensions in mm
23. ACCESSORIES

23.1. ZM5.WALL – WALL/PANEL MOUNT BRACKET

This bracket is used to mount the devices on a wall/panel without utilizing a DIN-Rail and can be mounted without detaching the DIN-rail brackets of the power supply.

Fig. 23-1 Isometric view
(Picture shows the CP20.241-R2)

Fig. 23-2 Isometric view
(Picture shows the CP20.241-R2)

Fig. 23-3 Isometric view
(Picture shows the CP20.241-R2)

Fig. 23-4 Wall/panel mounting, front view
(Picture shows the CP20.241-R2)

Fig. 23-5 Hole pattern for wall mounting

Fig. 23-6 Wall/panel mounting, side view
(Picture shows the CP20.241-R2)
24. APPLICATION NOTES

24.1. PEAK CURRENT CAPABILITY

The unit can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents. This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the PowerBoost). The same situation applies when starting a capacitive load.

The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.

The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following three examples show typical voltage dips for resistive loads:

- **Fig. 24-1** 40A peak current for 50ms, typ. (2x the nominal current)
- **Fig. 24-2** 100A peak current for 5ms, typ. (5x the nominal current)
- **Fig. 24-3** 60A peak current for 12ms, typ. (3x the nominal current)

Please note: The DC-OK relay might triggers when the voltage dips below 22Vdc for longer than 1ms.

Peak current voltage dips
<table>
<thead>
<tr>
<th>typ.</th>
<th>from 24V to 16V</th>
<th>At 40A for 50ms, resistive load</th>
</tr>
</thead>
<tbody>
<tr>
<td>typ.</td>
<td>from 24V to 21V</td>
<td>At 100A for 2ms, resistive load</td>
</tr>
<tr>
<td>typ.</td>
<td>from 24V to 16.5V</td>
<td>At 100A for 5ms, resistive load</td>
</tr>
</tbody>
</table>

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
24.2. Adjusting the Output Voltage

A voltage adjustment potentiometer can be found behind the flap on the front of the unit. However, it is not recommended to change the output voltage since load sharing between power supplies connected in parallel can only be achieved by a precise setting of the output voltages. The factory settings allow precise load sharing and only qualified personnel should change the adjustment potentiometer.

Lower end of the specified adjustment range

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>Nom. 24.0V Due to the soft output voltage regulation characteristic (parallel mode feature) a setting to 24.0V results to an output voltage of 23.8V±0.2% at 24A and 25.0V±0.2% at no load. See Fig. 24-4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current</td>
<td>Min. 24A At 45°C</td>
</tr>
</tbody>
</table>

Upper end of the specified adjustment range

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>Nom. 28.0V Due to the soft output voltage regulation characteristic (parallel mode feature) a setting to 28.0V results to an output voltage of 27.7V±0.2% at 20.6A and 29.2V±0.2% at no load. See Fig. 24-4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current</td>
<td>Min. 20.6A At 45°C</td>
</tr>
</tbody>
</table>

The maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances is 30V. It is not a guaranteed value which can be achieved. The typical value is 29.5V.

Current values between 24 and 28V can be interpolated.

The output voltage shall only be changed when absolutely necessary, e.g. for battery charging as described in the next chapter.
24.3. Charging of Batteries

This redundancy power supply is ideal for charging batteries due to the decoupling circuit built in to the output stage which does not require a fuse or diode between the power supply and the battery.

It can be used to charge sealed lead acid (SLA) or valve regulated lead acid (VRLA) lead batteries when following these instructions:

a) Set output voltage (measured at disconnected battery) very precisely to the end-of-charge voltage. Use the potentiometer, which is hidden behind the flap on the front of the unit. See chapter 24.2.

<table>
<thead>
<tr>
<th>Battery temperature</th>
<th>10°C</th>
<th>20°C</th>
<th>30°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-of-charge voltage</td>
<td>27.8V</td>
<td>27.5V</td>
<td>27.15V</td>
<td>26.8V</td>
</tr>
</tbody>
</table>

b) Ensure that the ambient temperature of the power supply stays below 40°C.

c) Use only matched batteries when connecting 12V types in series.

d) The return current to the power supply (battery discharge current) is typically 11mA when the power supply is switched off.

24.4. Output Circuit Breakers

Standard miniature circuit breakers (MCB’s or UL 1077 circuit breakers) are commonly used for AC-supply systems and may also be used on 24V branches.

MCB’s are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.

To avoid voltage dips and under-voltage situations in adjacent 24V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10ms is necessary corresponding roughly to the ride-through time of PLC’s. This requires power supplies with high current reserves and large output capacitors.

Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm’s law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length.

Maximal wire length for a fast (magnetic) tripping:

<table>
<thead>
<tr>
<th>MCB Type</th>
<th>Power Supply</th>
<th>Maximal Wire Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC</td>
<td>0.75mm²</td>
</tr>
<tr>
<td>C-2A</td>
<td>34m</td>
<td>45m</td>
</tr>
<tr>
<td>C-3A</td>
<td>27m</td>
<td>36m</td>
</tr>
<tr>
<td>C-4A</td>
<td>19m</td>
<td>26m</td>
</tr>
<tr>
<td>C-6A</td>
<td>9m</td>
<td>12m</td>
</tr>
<tr>
<td>C-8A</td>
<td>4m</td>
<td>8m</td>
</tr>
<tr>
<td>C-10A</td>
<td>4m</td>
<td>6m</td>
</tr>
<tr>
<td>C-13A</td>
<td>2m</td>
<td>3m</td>
</tr>
<tr>
<td>B-6A</td>
<td>23m</td>
<td>30m</td>
</tr>
<tr>
<td>B-10A</td>
<td>11m</td>
<td>14m</td>
</tr>
<tr>
<td>B-13A</td>
<td>7m</td>
<td>12m</td>
</tr>
<tr>
<td>B-16A</td>
<td>4m</td>
<td>6m</td>
</tr>
<tr>
<td>B-20A</td>
<td>1m</td>
<td>1m</td>
</tr>
</tbody>
</table>

*) Don’t forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and – wire).
24.5. Series Operation

Power supplies of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc must be installed with a protection against touching.

Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in series in mounting orientations other than the standard mounting orientation (input terminals on bottom of the unit).

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

24.6. Parallel Use to Increase Output Power

Power supplies can be paralleled to increase the output power. For redundancy applications one extra power supply is always needed for sufficient output current in case one unit fails.

The unit is permanently set to “parallel use” mode in order to achieve load sharing between power supplies connected in parallel. The “Parallel use” mode regulates the output voltage in such a manner that the voltage at no load is approx. 4% higher than at nominal load. See also chapter 6.

Energize all units at the same time. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in overload or short circuits and the required output current is higher than the current of one unit.

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other.

Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (input terminals on bottom of the unit) or in any other condition where a derating of the output current is required (e.g. altitude).

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

Do not load paralleled power supplies with higher currents as shown in the following diagrams:

Fig. 24-6 Output current vs. ambient temp. for two paralleled units

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>8A</th>
<th>16A</th>
<th>24A</th>
<th>32A</th>
<th>40A</th>
<th>48A</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>40°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>50°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>60°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>70°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

A... continuous
B... short term (max. 5s)

Fig. 24-7 Output current vs. ambient temp. for three paralleled units

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>12A</th>
<th>24A</th>
<th>36A</th>
<th>48A</th>
<th>60A</th>
<th>72A</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>40°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>50°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>60°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>70°C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

A... continuous
B... short term (max. 5s)

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
24.7. PARALLEL USE FOR REDUNDANCY

Power supplies can be paralleled for redundancy to gain higher system availability. The unit is already equipped with a MOSFET as decoupling device on the output to avoid, that a faulty unit becomes a load for the other power supplies and the output voltage cannot be maintained any more.

Recommendations for building redundant power systems:

a) Use separate input fuses for each power supply.

b) Monitor the individual power supply units by utilizing the built-in DC-OK relay contacts on each power supply.

Fig. 24-8 Wiring diagram, 1+1 Redundancy for 20A output current

Fig. 24-9 Wiring diagram, N+1 Redundancy for 40A output current

Observe the temperature derating requirements of Fig. 24-6 and Fig. 24-7 for n+1 redundancy applications.

Note: Use separate mains systems for each power supply whenever it is possible.

Nov. 2019 / Rev. 1.0 DS-CP20.241-R2-EN - All parameters are typical values specified at 230Vac, 50Hz input voltage, 24V, 20A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
24.8. Operation on Two Phases

The power supply can also be used on two-phases of a three-phase system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below 240V+10%. The maximum allowed voltage between a Phase and the PE must be below 300Vac.

24.9. Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply. The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

The power supply is placed in the middle of the box, no other heat producing items are inside the box.

- **Enclosure:** Rittal Typ IP66 Box PK 9519 100, plastic, 180x180x165mm
- **Load:** 24V, 16A; (=80%) load is placed outside the box
- **Input:** 230Vac
- **Temperature inside enclosure:** 51.9°C (in the middle of the right side of the power supply with a distance of 2cm)
- **Temperature outside enclosure:** 25.6°C
- **Temperature rise:** 26.3K
24.10. MOUNTING ORIENTATIONS

Mounting orientations other than all terminals on the bottom require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1
Recommended output current.

Curve A2
Max allowed output current (results in approximately half the lifetime expectancy of A1).

![Mounting Orientation A](image)

![Mounting Orientation B](image)

![Mounting Orientation C](image)

![Mounting Orientation D](image)

![Mounting Orientation E](image)