1. GENERAL DESCRIPTION

The UB10.245 uninterruptible power supply (UPS) controller along with a standard 24V power supply and one 12V battery can bridge power failures or voltage fluctuations. This unit can supply and bridge both a 24V load as well as a 12V load at the same time. The 12V is generated by a DC/DC converter from the 24V output. Therefore, systems that utilize 24V control circuits and require 12V for e.g. remote radio telemetry can be supplied with only one UB10.245 DC-UPS controller.

The DC-UPS includes a professional battery management system which charges and monitors the battery to achieve the longest battery service life as well as many diagnostic functions that ensure a reliable operation of the entire system.

2. SHORT-FORM DATA

<table>
<thead>
<tr>
<th>Input voltage</th>
<th>24Vdc</th>
<th>Nominal voltage range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>Normal mode</td>
<td>24V output</td>
</tr>
<tr>
<td></td>
<td>0.23V lower as</td>
<td>Typ., 24V output</td>
</tr>
<tr>
<td></td>
<td>input voltage</td>
<td>12V output</td>
</tr>
<tr>
<td>Output voltage</td>
<td>Buffer mode</td>
<td>24V output at 10A</td>
</tr>
<tr>
<td></td>
<td>22.25V</td>
<td>12V output at 5A</td>
</tr>
<tr>
<td>Output current</td>
<td>Normal mode</td>
<td>24V output</td>
</tr>
<tr>
<td></td>
<td>0 - 15A</td>
<td>24V output</td>
</tr>
<tr>
<td></td>
<td>0 - 5A</td>
<td>12V output</td>
</tr>
<tr>
<td>Output current</td>
<td>Buffer mode</td>
<td>24V output</td>
</tr>
<tr>
<td></td>
<td>0 - 10A</td>
<td>24V output</td>
</tr>
<tr>
<td></td>
<td>10 – 15A for 5s</td>
<td>24V output</td>
</tr>
<tr>
<td></td>
<td>0 - 5A</td>
<td>12V output</td>
</tr>
<tr>
<td>Total output power</td>
<td>Normal mode</td>
<td>360W</td>
</tr>
<tr>
<td></td>
<td>Buffer mode</td>
<td>240W</td>
</tr>
<tr>
<td>Allowed batteries</td>
<td>3.9Ah to 27Ah</td>
<td>VRLA lead acid</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-25 to +70°C</td>
<td>Operational</td>
</tr>
<tr>
<td>Derating</td>
<td>6W/°C</td>
<td>+50 to +70°C</td>
</tr>
<tr>
<td>Dimensions</td>
<td>49x124x117mm</td>
<td>WxHxD</td>
</tr>
<tr>
<td>Buffer time</td>
<td>typ. 6’30"</td>
<td>7Ah battery module</td>
</tr>
<tr>
<td></td>
<td>typ. 54’</td>
<td>24V 7A, 12V 5A</td>
</tr>
</tbody>
</table>

3. ORDER NUMBERS

<table>
<thead>
<tr>
<th>DC-UPS</th>
<th>UB10.245</th>
<th>24V and 12V output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>UZK12.071</td>
<td>Battery module 12V 7Ah</td>
</tr>
<tr>
<td></td>
<td>UZO12.07</td>
<td>Mounting kit w/o battery</td>
</tr>
<tr>
<td></td>
<td>UZK12.261</td>
<td>Battery module 12V 26Ah</td>
</tr>
<tr>
<td></td>
<td>UZO12.26</td>
<td>Mounting kit w/o battery</td>
</tr>
<tr>
<td></td>
<td>ZM1.WALL</td>
<td>Panel/Wall mount bracket</td>
</tr>
</tbody>
</table>

4. MARKINGS

Mar. 2019 / Rev. 1.1a Datasheet DS-UB10.245-EN
All parameters are specified at an input voltage of 24V, 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. It is assumed that the input power source can deliver a sufficient output current.

www.pulspower.com Phone +49 89 9278 0 Germany
1. General Description ..1
2. Short-form Data ..1
3. Order Numbers ..1
4. Markings ..1
5. Input ..3
6. Output in Normal Mode4
7. Output in Buffer Mode5
8. Battery Input ...7
9. Buffer Time ..8
10. Efficiency and Power Losses.............................. 10
11. Functional Diagram ... 10
12. Check Wiring and Battery Quality Tests11
13. Relay Contacts and Inhibit Input 12
14. Front Side User Elements 13
15. Terminals and Wiring .. 14
16. Reliability ...15
17. EMC..16
18. Environment ...17
19. Protection Features ...17
20. Safety ..18
21. Approvals ..18
22. Fulfilled Standards ...18
23. Used Substances ...19
24. Physical Dimensions and Weight..................... 19
25. Installation Notes ... 20
26. Accessories ..21
27. Application Notes..22
27.1. Battery Replacement Intervals......................22
27.2. Parallel and Serial Use................................. 23
27.3. Using the Inhibit Input................................. 24
27.4. Troubleshooting ... 24

INTENDED USE
The unit shall only be installed and put into operation by qualified personnel.
This unit is designed for installation in an enclosure and is intended for general use, such as in industrial control,
office, communication, and instrumentation equipment. Do not use this device in aircraft, trains and nuclear
equipment, where malfunctioning of the power supply may cause severe personal injury or threaten human life.

TERMINOLOGY AND ABBREVIATIONS

DC-UPS Uninterruptible power supply with DC-Input.
Normal mode Describes a condition where the battery is charged, the input voltage is in range and the output is
loaded within the allowed limits.
Buffer mode Describes a condition where the input voltage is below the transfer threshold level, the unit is
running on battery (buffering) and the output is loaded within the allowed limits.
Charging mode Describes a condition where the battery is being charged, the input voltage is in range and the
output is loaded within the allowed limits.
Inhibit mode Describes a condition where buffering is disabled on purpose by using the inhibit input of the DC-
UPS. (e.g. for service actions, or to save battery capacity)
Buffer time Same as the term “hold-up time”.
T.b.d. To be defined, value or description will follow later.

DISCLAIMER
The information presented in this document is believed to be accurate and reliable and may change without notice.
Some parts of this unit are patent by PULS (US patent No 091662,063, Des. 424,529, …).

No part of this document may be reproduced or utilized in any form without permission in writing from the publisher.
5. INPUT

Input voltage nom. DC 24V
Input voltage ranges nom. 22.5 to 30Vdc Continuous operation, see Fig. 5-1
30 to 35Vdc Temporarily allowed, no damage to the DC-UPS *)
35Vdc Absolute maximum input voltage with no damage to the
DC-UPS
0 to 22.5Vdc The DC-UPS switches into buffer mode and delivers
output voltage from the battery if the input was above
the turn-on level before and all other buffer conditions
are fulfilled.

Allowed input voltage ripple max. 1.5Vpp Bandwidth <400Hz
1Vpp Bandwidth 400Hz to 1kHz

Allowed voltage between input and earth (ground) max. 60Vdc or
42.4Vac

Turn-on voltage typ. 22.8Vdc The output does not switch on if the input voltage does
max. 23Vdc not exceed this level.

Input current **) typ. 140mA Internal current consumption
typ. 1.1A Current consumption for battery charging in constant
current mode at 24V input See Fig. 8-2 ***)

External capacitors on the input No limitation

*) The DC-UPS shows “Check Wiring” with the red LED and buffering is not possible
**) The total input current is the sum of the output current, the current which is required to charge the battery during the
charging process and the current which is needed to supply the DC-UPS itself. See also Fig. 5-2. This calculation does not apply
in overload situations where the DC-UPS limits the output current, therefore see Fig. 5-3.
***) Please note: This is the input current and not the current which flows into the battery during charging. The battery current can
be found in chapter 8.

Electronic output current limitation
The DC-UPS is equipped with an electronic output current limitation. This current limitation works in a
switching mode which reduces the power losses and heat generation to a minimum. As a result, the
output voltage drops since there is not enough current to support the load. A positive effect of the
current limitation in switching mode is that the input current goes down despite an increase in the output
current resulting in less stress for the supplying source. Fig. 5-3 shows the behavior when the 12V is
not loaded. Power which is taken out from the 12V reduces the power on the 24V side.

Fig. 5-1 Input voltage range

Fig. 5-2 Input current, definitions

Fig. 5-3 Input current vs. 24V output current, typ. (battery fully charged)
6. **OUTPUT IN NORMAL MODE**

The total output power of 360W can be shifted dynamically between the two outputs.

24V Output:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nom.</th>
<th>DC 24V</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>nom.</td>
<td>DC 24V</td>
<td>The output voltage follows the input voltage reduced by the input to output voltage drop.</td>
</tr>
<tr>
<td>Voltage drop between input and output</td>
<td>max.</td>
<td>0.3V</td>
<td>At 10A output current, see Fig. 6-1 for typical values</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>0.45V</td>
<td>At 15A output current, see Fig. 6-1 for typical values</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>max.</td>
<td>20mVpp</td>
<td>20Hz to 20MHz, 500Ohm *)</td>
</tr>
<tr>
<td>Output current</td>
<td>nom.</td>
<td>0 – 15A</td>
<td>Continuously allowed, lower if the 12V output is loaded</td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>12.3A</td>
<td>Output if 12V output is loaded with 5A</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>min.</td>
<td>17.9A</td>
<td>Load impedance 100mOhm, see Fig. 6-2 for typical values. The 12V output is off during an overload or short on the 24V.</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>21A</td>
<td></td>
</tr>
</tbody>
</table>

Capacitive and inductive loads: No limitation

12V Output:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nom.</th>
<th>DC 12V</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>nom.</td>
<td>DC 12V</td>
<td></td>
</tr>
<tr>
<td>Voltage drop tolerance</td>
<td>±2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>typ.</td>
<td>30mVpp</td>
<td>20Hz to 20MHz, 500Ohm *)</td>
</tr>
<tr>
<td>Output current</td>
<td>nom.</td>
<td>0 – 5A</td>
<td>Continuously allowed, may be lower if the 24V output is loaded more than 12.3A</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>min.</td>
<td>4A</td>
<td>Load impedance 100mOhm, see Fig. 7-5. for typical values. The 24V output is on during an overload or short on the 12V.</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>5.5A</td>
<td></td>
</tr>
</tbody>
</table>

Capacitive and inductive loads: No limitation

*) This figure shows the ripple and noise voltage which is generated by the DC-UPS. The ripple and noise voltage might be higher if the supplying source has a higher ripple and noise voltage.

Fig. 6-1 Input to output voltage drop, typ.

Fig. 6-2 Output voltage vs. output current in normal mode at 24V input, typ.
7. **Output in Buffer Mode**

If the input voltage falls below the transfer threshold level, the DC-UPS starts buffering without any interruption or voltage dips. The transfer threshold level is typically 80mV higher than the 24V output voltage in buffer mode. Buffering is possible even if the battery is not fully charged.

24V Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>DC 24V</td>
</tr>
<tr>
<td>nom.</td>
<td>22.45V ±1%, at no load,</td>
</tr>
<tr>
<td></td>
<td>22.25V ±1%, at 10A output current</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>max. 20mVpp 20Hz to 20MHz, 50Ohm</td>
</tr>
<tr>
<td>Output current</td>
<td>nom. 0 - 10A Continuously allowed, 12V output not loaded.</td>
</tr>
<tr>
<td></td>
<td>10 - 15A *) 12V output not loaded.</td>
</tr>
<tr>
<td></td>
<td>min. 7.0A If 12V output is loaded with 5A.</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>min. 17.9A Load impedance 100mOhm **); The 12V output is off during an overload or short on the 24V.</td>
</tr>
<tr>
<td></td>
<td>max. 21A</td>
</tr>
</tbody>
</table>

12V Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>DC 12V</td>
</tr>
<tr>
<td>nom.</td>
<td>±2%</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>typ. 30mVpp 20Hz to 20MHz, 50Ohm</td>
</tr>
<tr>
<td>Output current</td>
<td>nom. 0 - 5A Continuously allowed.</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>min. 4A Load impedance 100mOhm; see Fig. 7-5 for typical values.</td>
</tr>
<tr>
<td></td>
<td>max. 5.5A Continuous constant; The 24V output is on during an overload or short on the 12V as long as the battery delivers current.</td>
</tr>
</tbody>
</table>

*) If the output current is in the range between 10A and 15A (Bonus Power) for longer than 5s, a hardware controlled reduction of the maximal output current to 10A occurs. If the 10A are not sufficient to maintain the 24V, buffering stops at both outputs after another 5s. The buffering is possible again as soon as the input voltage recovers.

**) If the nominal output voltage cannot be maintained in buffer mode, the DC-UPS switches off after 5s to save battery capacity.

*Fig. 7-1 Buffering transition, definitions

Fig. 7-2 Transfer behavior, typ.
Fig. 7-3 Available output current in buffer mode

Fig. 7-4 24V Output voltage vs. output current in buffer mode, typ.

Fig. 7-5 12V Output voltage vs. output current in normal or buffer mode, typ.

All parameters are specified at an input voltage of 24V, 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. It is assumed that the input power source can deliver a sufficient output current.
8. Battery Input

The DC-UPS requires one 12V VRLA battery to buffer the 24V and 12V output.

Battery voltage	nom.	DC 12V
Use one maintenance-free 12V VRLA lead acid battery or one battery module which is listed in the chapter accessories.

Battery voltage range

| max. | 35Vdc |
| typ. | 7.4V |
Continuously allowed, except deep discharge protection
Absolute maximum voltage with no damage to the unit
Above this voltage level battery charging is possible

Allowed battery sizes

| min. | 3.9Ah |
| max. | 27Ah |

Internal battery resistance

| max. | 100mOhm |
See individual battery datasheets for this value

Battery charging method

| nom. | CC-CV |
Constant current, constant voltage mode

Battery charging current (CC-mode)

| max. | 1.7A |
| typ. | 1.5A |
Independent from battery size,
Corresponding 24V input current see Fig. 8-2

End-of-charge-voltage (CV-mode)

| max. | 13.4-13.9V |
Adjustable, see chapter 14

Battery charging time

| typ. | 5h *) |
For a 7Ah battery
| typ. | 17h *) |
For a 26Ah battery

Battery discharging current (**)

| typ. | 21A |
Buffer mode, 240W output, 11.5V on the battery terminal of the DC-UPS, see Fig. 8-1 for other parameters
| typ. | 0.3A |
Buffer mode, 0A output current
| max. | 50µA |
At no input, buffering had switched off, all LEDs are off
| typ. | 310mA |
At no input, buffering had switched off, yellow LED shows “buffer time expired” (max. 15 minutes)

Deep discharge protection (***)

| typ. | 10.5V |
At 0% output load
| typ. | 9.0V |
At 100% output load

*) The charging time depends on the duration and load current of the last buffer event. The numbers in the table represent a fully discharged battery. A typical figure for a buffer current of 10A at 24V output is 3h 20Min. for a 7Ah battery.

**) The current between the battery and the DC-UPS is more than twice the 24V output current. This is caused by boosting the 12V battery voltage to a 24V level. This high current requires large wire gauges and short cable length for the longest possible buffer time. The higher the resistance of the connection between the battery and the DC-UPS, the lower the voltage on the battery terminals which increases the discharging current. See also chapter 25 for more installation instructions.

***) To ensure longest battery lifetime, the DC-UPS has a battery deep discharge protection feature included. The DC-UPS stops buffering when the voltage on the battery terminals of the DC-UPS falls below a certain value.

Fig. 8-1 Battery discharging current vs. 24V output current, typ. (12V not loaded)

![Battery discharging current vs. 24V output current, typ. (12V not loaded)](image)

Fig. 8-2 Required input current vs. input voltage for battery charging (12V not loaded)

![Required input current vs. input voltage for battery charging (12V not loaded)](image)
9. Buffer Time

The buffer time depends on the capacity and performance of the battery as well as the load current. The diagram below shows the typical buffer times of the 24V output with the standard battery modules at 20°C.

| Buffer time with battery module UZK12.071 | min. | 18'30” | At 5A output current *)
| | min. | 5'30” | At 10A output current *)
| | typ. | 20'50” | At 5A output current, see Fig. 9-1 **)
| | typ. | 6'30” | At 10A output current, see Fig. 9-1 **)

| Buffer time with battery module UZK12.261 | min. | 96'30” | At 5A output current *)
| | min. | 37'50” | At 10A output current *)
| | typ. | 126’ | At 5A output current, see Fig. 9-1 **)
| | typ. | 53'20” | At 10A output current, see Fig. 9-1 **)

*) Minimum value includes 20% aging of the battery and a cable length of 1.5m with a cross section of 2.5mm² between the battery and the DC-UPS and requires a fully charged (min. 24h) battery.

**) Typical value includes 10% aging of the battery and a cable length of 0.3m with a cross section of 2.5mm² between the battery and the DC-UPS and requires a fully charged (min. 24h) battery.

Fig. 9-1 Buffer time vs. 24V output current with the battery modules UZK12.071 and UZK12.261

The buffer time is reduced if the 12V output is loaded. This can be calculated according to the following example:

Example: 24V, 5A and 12V, 4A load

Step 1: Convert the 12V current to a virtual 22.3V level:
Ratio: 12V/22.3V = 0.54 12V, 4A output converted to 22.3V level: 0.54*4A = 2.15A

Step 2: Add the computed current to the actual 24V current:
2.15A + 5A = 7.15A

Step 3: Determine the buffer time by using the standard buffer time curve (Fig. 9-1):
7.15A load with UZK12.071: Approx. 12 minutes buffer time.

The battery capacity is usually specified in amp-hours (Ah) for a 20h discharging event. The battery discharge is nonlinear (due to the battery chemistry). The higher the discharging current, the lower the appropiable battery capacity. The magnitude of the reduction depends on the discharging current as well as on the type of battery. High current battery types can have up to 50% longer buffer times compared to regular batteries when batteries will be discharged in less than 1 hour. High discharging currents do not necessarily mean high power losses as the appropiable battery capacity is reduced with such currents. When the battery begins to recharge after a discharging...
event, the process is completed much faster since only the energy which was taken out of the battery needs to be “refilled”. For this reason, the buffer time cannot be calculated using the Ah capacity value.

The equation “I x t” = capacity in Ah generally leads to incorrect results when the discharging current is higher than C20 (discharging current for 20h). The battery datasheet needs to be studied and a determination of the expected buffer time can be made according to the following example:

Example how to determine the expected buffer time for other battery types and battery sizes:

Step 1 Check the datasheet of the battery which is planned to be used and look for the discharging curve. Sometimes, the individual discharging curves are marked with relative C-factors instead of current values. This can easily be converted. The C-factor needs to be multiplied with the nominal battery capacity to get the current value. E.g.: 0.6C on a 17Ah battery means 10.2A.

Step 2 Determine the required battery current. Use Fig. 8-1 “Battery discharging current vs. output current” to get the battery current. Fig. 8-1 requires the average voltage on the battery terminals. Since there is a voltage drop between the battery terminals and the battery input of the DC-UPS, it is recommended to use the curve A or B for output currents > 3A or when long battery cables are used. For all other situations, use curve C.

Step 3 Use the determined current from Step 2 to find the appropriate curve in Fig. 9-2. The buffer time (Discharging Time) can be found where this curve meets the dotted line. This is the point where the DC-UPS stops buffering due to the under-voltage lockout.

Step 4 Depending on Fig. 9-2, the buffer time needs to be reduced to take aging effects or guaranteed values into account.

Example:
The buffer current is 24V 7.5A and a battery according Fig. 9-2 is used. The cable between the battery and the DC-UPS is 1m and has a cross section of 2.5mm². How much is the maximum achievable buffer time.

Answer:
- According to Fig. 8-1, the battery current is 18A. Curve A is used since the battery current is > 3A and the length of the cable is one meter.
- According to Fig. 9-2, a buffer time (Discharging Time) of 30 Minutes can be determined. It is recommended to reduce this figure to approximately 24 minutes for a guaranteed value and to cover aging effects.
10. EFFICIENCY AND POWER LOSSES

<table>
<thead>
<tr>
<th></th>
<th>typ.</th>
<th>Normal mode, 24V 10A, 12V 0A, battery fully charged</th>
<th>typ.</th>
<th>Normal mode, 24V 7.0A, 12V 5A, battery fully charged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>97.5%</td>
<td></td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>Power losses</td>
<td>3.4W</td>
<td></td>
<td>6W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10W</td>
<td></td>
<td>5.5W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19W</td>
<td></td>
<td>23W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4W</td>
<td></td>
<td>6W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10W</td>
<td></td>
<td>5.5W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19W</td>
<td></td>
<td>23W</td>
<td></td>
</tr>
</tbody>
</table>

11. FUNCTIONAL DIAGRAM

Fig. 11-1 Functional diagram

*) Return current protection; This feature utilizes a Mosfet instead of a diode in order to minimize the voltage drop and power losses.
12. CHECK WIRING AND BATTERY QUALITY TESTS

The DC-UPS is equipped with an automatic “Check Wiring” and “Battery Quality” test.

“Check Wiring” test:
Under normal circumstances, an incorrect or bad connection from the battery to the DC-UPS or a missing (or blown) battery fuse would not be recognized by the UPS when operating in normal mode. Only when back up is required would the unit not be able to buffer. Therefore, a “check wiring” test is included in the DC-UPS. This connection is tested every 10 seconds by loading the battery and analyzing the response from the battery. If the resistance is too high, or the battery voltage is not in range, the unit displays “Check Wiring” with the red LED. At the same time the green “Ready” LED will turn off.

“Battery Quality” or “State of Health” (SoH) test:
The battery has a limited service life and needs to be replaced in a fixed interval which is defined by the specified service life (acc. to the Eurobat guideline), based on the surrounding temperature and the number of charging/discharging cycles. If the battery is used longer than the specified service life, the battery capacity will degrade. Details can be found in chapter 27.1. The battery quality test can not determine a gradual loss in capacity. However, it can detect a battery failure within the specified service life of the battery. Therefore a battery quality test is included in the DC-UPS.

The battery quality test consists of different types of tests:
- During charging:
 If the battery does not reach the ready status (see chapter 14) within 30h, it is considered to be defective.
 The reason could be a broken cell inside the battery.
- During operation:
 Once the battery is fully charged, a voltage drop test and a load test is performed alternately every 8 hours.
 Three of the tests must consecutively produce negative results to indicate a battery problem.

A battery problem is indicated with the yellow LED (replace battery pattern) and the relay contact “Replace Battery”. Please note that it can take up to 50 hours (with the largest size of battery) until a battery problem is reported. This should avoid nuisance error messages as any urgent battery problems will be reported by the “Check Wiring” test and create a warning signal. The battery tests require up to 50h uninterrupted operation. Any interruptions in the normal operation of the DC-UPS may result in the “Replace Battery” test cycle to start over.

When “Replace battery” is indicated, it is recommended to replace battery as soon as possible.
13. Relay Contacts and Inhibit Input

The DC-UPS is equipped with relay contacts and signal inputs for remote monitoring and controlling of the unit.

Relay contacts:
- **Ready:** Contact is closed when battery is charged more than 85%, no wiring failure are recognized, input voltage is sufficient and inhibit signal is not active.
- **Buffering:** Contact is closed when unit is buffering.
- **Replace Battery:** Contact is closed when the unit is powered from the input and the battery quality test (SOH test) reports a negative result.

<table>
<thead>
<tr>
<th>Relay contact ratings</th>
<th>max 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A resistive load</th>
</tr>
</thead>
<tbody>
<tr>
<td>min 1mA at 5Vdc min.</td>
<td></td>
</tr>
</tbody>
</table>

Isolation voltage:
- max 500Vac, signal port to power port

Signal input:
- **Inhibit:** The inhibit input disables buffering. In normal mode, a static signal is required. In buffer mode, a pulse with a minimum length of 250ms is required to stop buffering. The inhibit is stored and can be reset by cycling the input voltage. See also section 27.1 for application hints.

Signal voltage	max 35Vdc
Signal current	max 6mA, current limited
Inhibit threshold	min 6Vdc, buffering is disabled above this threshold level
max 10Vdc	
Isolation	nom 500Vac, signal port to power port
14. FRONT SIDE USER ELEMENTS

A Power Port
Quick-connect spring-clamp terminals, connection for input voltage, output voltage and battery. The 12V power port is placed on the bottom.

B Signal Port
Plug connector with screw terminals, inserted from the bottom. Connections for the Ready, Buffering, Replace Battery relay contacts and for the Inhibit input. See details in chapter 13.

C Green Status LED
Ready: Battery is charged > 85%, no wiring failure is recognized, input voltage is sufficient and inhibit signal is not active.
Charging: Battery is charging and the battery capacity is below 85%.
Buffering: Unit is in buffer mode.
Flashing pattern of the green status LED:

D Yellow Diagnosis LED
Overload: Output has switched off due to long overload in buffer mode or due to high temperatures.
Replace battery: Indicates a battery which failed the battery quality test (SoH test). Battery should be replaced soon.
Buffer-time expired: Output has switched off due to settings of Buffer-time Limiter. This signal will be displayed for 15 minutes.
Inhibit active: Indicates that buffering is disabled due to an active inhibit signal.
Flashing pattern of the yellow diagnosis LED:

E Red Check Wiring LED
This LED indicates a failure in the installation (e.g. too low input voltage), wiring, battery or battery fuse.

F Buffer-time Limiter:
User accessible dial which limits the maximum buffer time in a buffer event to save battery energy. When the battery begins to recharge after a discharging event, the process is completed much faster since only the energy which was taken out of the battery needs to be “refilled”. The following times can be selected: 10 seconds, 30 seconds, 1 minute, 3 minutes, 10 minutes or infinity (until battery is flat) which allows buffering until the deep discharge protection stops buffering.

G End-of-charge-voltage Selector:
The end-of-charge-voltage shall be set manually according to the expected temperature in which the battery is located. The dial on the front of the unit allows an continuously adjustment between +10 and +40°C. 10°C will set the end-of-charge-voltage to 13.9V, 25°C → 13.65V and 40°C → 13.4V. If in doubt about the expected temperature, set the unit to 40°C.

Mar. 2019 / Rev. 1.1a Datasheet DS-UB10.245-EN
All parameters are specified at an input voltage of 24V, 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. It is assumed that the input power source can deliver a sufficient output current.
15. TERMINALS AND WIRING

<table>
<thead>
<tr>
<th></th>
<th>Power terminals (except 12V)</th>
<th>12V Terminal</th>
<th>Signal terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Bi-stable, quick-connect spring-clamp terminals. Shipped in open position.</td>
<td>Lockable plug connector with spring-clamp terminals.</td>
<td>Plug connector with screw terminal. Shipped in open position. To meet GL requirements, unused terminal compartments should be closed.</td>
</tr>
<tr>
<td>Solid wire</td>
<td>0.5-6mm²</td>
<td>0.1-2.5mm²</td>
<td>0.2-1.5mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>0.5-4mm²</td>
<td>0.1-2.5mm²</td>
<td>0.2-1.5mm²</td>
</tr>
<tr>
<td>AWG</td>
<td>20-10AWG</td>
<td>28-12AWG</td>
<td>22-14AWG</td>
</tr>
<tr>
<td>Ferrules</td>
<td>Allowed, but not required</td>
<td>Allowed, but not required</td>
<td>Allowed, but not required</td>
</tr>
<tr>
<td>Pull-out force</td>
<td>10AWG:80N, 12AWG:60N, 14AWG:50N, 16AWG:40N according to UL486E</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Recom. screwdriver</td>
<td>Not required</td>
<td>3,5mm slotted</td>
<td>3,5mm slotted</td>
</tr>
<tr>
<td>Tightening torque</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>0.4Nm, 3.5lb.in</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>10mm / 0.4inch</td>
<td>8.5mm / 0.34inch</td>
<td>6mm / 0.24inch</td>
</tr>
</tbody>
</table>

Instructions:

a) Use appropriate copper cables, that are designed for an operating temperature of 60°C
b) Follow national installation codes and regulations!

c) Ensure that all strands of a stranded wire enter the terminal connection!
d) Up to two stranded wires with the same cross section are permitted in one connection point
16. Reliability

<table>
<thead>
<tr>
<th>Lifetime expectance, normal mode</th>
<th>min.</th>
<th>114 000 h</th>
<th>At 10A output current, 40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min.</td>
<td>148 000 h</td>
<td>At 5A output current, 40°C</td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>380 000 h</td>
<td>At 10A output current, 25°C</td>
</tr>
<tr>
<td>MTBF SN 29500, IEC 61709, normal mode</td>
<td>788 000 h</td>
<td>At 10A output current, 40°C</td>
<td></td>
</tr>
<tr>
<td>MTBF MIL HDBK 217F, normal mode</td>
<td>343 000 h</td>
<td>At 10A output current, 40°C, ground benign GB40</td>
<td></td>
</tr>
</tbody>
</table>

The **Lifetime expectancy** shown in the table indicates the operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours. Lifetime expectancy is calculated according to the capacitor's manufacturer specification. The prediction model allows a calculation of up to 15 years from date of shipment.

MTBF stands for **Mean Time Between Failure**, which is calculated according to statistical device failures and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.
17. EMC

The unit is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions. CE mark is in conformance with EMC directive 89/336/EC and 93/68/EC and 2004/108/EC and the low-voltage directive (LVD) 73/23/EC, 93/68/EC, 2006/95/EC.

A detailed EMC Report is available on request.

<table>
<thead>
<tr>
<th>EMC Immunity</th>
<th>EN 61000-6-1, EN 61000-6-2</th>
<th>EN 61000-6-3</th>
<th>EN 61000-6-4</th>
<th>EN 61000-6-5</th>
<th>EN 61000-6-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>EN 61000-4-2</td>
<td>Contact discharge</td>
<td>EN 61000-4-3</td>
<td>Electrostatic discharge</td>
<td>EN 61000-4-5</td>
</tr>
<tr>
<td>EN 61000-4-2</td>
<td>Air discharge</td>
<td>EN 61000-4-4</td>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-5</td>
<td>Contact discharge</td>
</tr>
<tr>
<td>8kV</td>
<td>15kV</td>
<td>2kV</td>
<td>2kV</td>
<td>500V</td>
<td>0,15-80MHz</td>
</tr>
<tr>
<td>Spectrum</td>
<td>Criterion A *)</td>
<td>Criterion A **</td>
<td>Criterion A</td>
<td>Criterion A</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-3</td>
<td>80MHz-1GHz</td>
<td>10V/m</td>
<td>500V</td>
<td>0,15-80MHz</td>
</tr>
<tr>
<td>Fast transients (Burst)</td>
<td>EN 61000-4-4</td>
<td>Out- and input lines</td>
<td>EN 61000-4-5</td>
<td>Fast transients (Burst)</td>
<td>EN 61000-4-6</td>
</tr>
<tr>
<td>EN 61000-4-4</td>
<td>Signal lines **)</td>
<td>EN 61000-4-5</td>
<td>Signal lines **)</td>
<td>EN 61000-4-6</td>
<td>Signal lines **)</td>
</tr>
<tr>
<td>2kV</td>
<td>Criterion A **</td>
<td>2kV</td>
<td>2kV</td>
<td>500V</td>
<td>Criterion A</td>
</tr>
<tr>
<td>Surge voltage</td>
<td>EN 61000-4-5</td>
<td>Input + / - → housing</td>
<td>EN 61000-4-6</td>
<td>Surge voltage</td>
<td>EN 61000-4-6</td>
</tr>
<tr>
<td>EN 61000-4-5</td>
<td>24V Output + → - housing</td>
<td>EN 61000-4-6</td>
<td>24V Output + → - housing</td>
<td>EN 61000-4-6</td>
<td>24V Output + → - housing</td>
</tr>
<tr>
<td>500V</td>
<td>Criterion A</td>
<td>500V</td>
<td>500V</td>
<td>500V</td>
<td>500V</td>
</tr>
<tr>
<td>Conducted disturbance</td>
<td>EN 61000-4-6</td>
<td>0,15-80MHz</td>
<td>10V</td>
<td>0,15-80MHz</td>
<td>10V</td>
</tr>
<tr>
<td>EN 61000-4-6</td>
<td>0,15-80MHz</td>
<td>10V</td>
<td>10V</td>
<td>10V</td>
<td>10V</td>
</tr>
</tbody>
</table>

*) DIN-Rail earthed

**) Tested with coupling clamp

<table>
<thead>
<tr>
<th>EMC Emission</th>
<th>EN 61000-6-3, EN 61000-6-4</th>
<th>EN 61000-6-5</th>
<th>EN 55011, EN 55022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted emission</td>
<td>EN 55022</td>
<td>Input lines</td>
<td>Class B *)</td>
</tr>
<tr>
<td>EN 55022</td>
<td>24V Output lines</td>
<td>Class B *)</td>
<td></td>
</tr>
<tr>
<td>EN 55022</td>
<td>12V Output lines</td>
<td>Class A *)</td>
<td></td>
</tr>
<tr>
<td>Radiated emission</td>
<td>EN 55011, EN 55022</td>
<td>Class B</td>
<td></td>
</tr>
</tbody>
</table>

This device complies with FCC Part 15 rules.
Operation is subjected to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

*) Informative measurement with voltage probe

Switching frequencies

The DC-UPS has four converters with four different switching frequencies included.

Switching frequency of boost converter 100kHz Constant frequency
Switching frequency of electronic output current limitation 78kHz Constant frequency
Switching frequency of battery charger 19.5kHz Constant frequency
Switching frequency of step-down converter 12V output 40-55kHz Depending on 12V output load
18. ENVIRONMENT

Operational temperature
-25°C to +70°C (-13°F to 158°F)
For the DC-UPS control unit. Keep battery in a cooler environment!

Derating
6W/°C
at +50°C to +70°C (122°F to 158°F), normal mode see Fig. 18-1, buffer mode see Fig. 18-2

Storage temperature
-40 to +85°C (-40°F to 185°F)
Storage and transportation, except battery

Humidity
5 to 95% r.H.
IEC 60068-2-30
Do not energize while condensation is present

Vibration sinusoidal
2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g
IEC 60068-2-6
IEC 60068-2-27

Shock
30g 6ms, 20g 11ms
EN 50178

Altitude
0 to 6000m
Approvals apply only up to 2000m

Over-voltage category
II
EN 50178

Degree of pollution
2
EN 50178, not conductive

19. PROTECTION FEATURES

Output protection
Electronically protected against overload, no-load and short-circuits

Output over-voltage protection
typ. 32Vdc
max. 35Vdc
24V Output
In case of an internal defect, a redundant circuitry limits the maximum output voltage. The output automatically shuts-down and makes restart attempts
max. 16V
12V Output: The unit is protected with a melting fuse. In case the fuse has triggered, send unit back to factory.

Degree of protection
IP20
EN/IEC 60529
Penetration protection
> 3.5mm
E.g. screws, small parts

Reverse battery polarity protection
yes
Max. –35Vdc;
Wrong battery voltage protection
yes
Max. +35Vdc (e.g. 24V battery instead of 12V battery)

Battery deep discharge protection
yes
The limit is battery current dependent

Over temperature protection
yes
Output shut-down with automatic restart

Input over-voltage protection
yes
Max. 35Vdc, no harm or defect of the unit

Internal input fuse
25A, blade type
No user accessible part, no service part

The ambient temperature is defined 2cm below the unit.

All parameters are specified at an input voltage of 24V, 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. It is assumed that the input power source can deliver a sufficient output current.
20. SAFETY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>SELV IEC/EN 60950-1</td>
</tr>
<tr>
<td></td>
<td>PELV EN 60204-1, EN 50178, IEC 60364-4-41</td>
</tr>
<tr>
<td>Max. allowed voltage</td>
<td>60Vdc or 42.4Vac</td>
</tr>
<tr>
<td>Class of protection</td>
<td>III PE (Protective Earth) connection is not required</td>
</tr>
<tr>
<td>Isolation resistance</td>
<td>> 5MOhm</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>500Vac</td>
</tr>
<tr>
<td></td>
<td>500Vac</td>
</tr>
<tr>
<td>Touch current (leakage current)</td>
<td>The leakage current which is produced by the DC-UPS itself depends on the input voltage ripple and need to be investigated in the final application. For a smooth DC input voltage, the produced leakage current is less than 100µA.</td>
</tr>
</tbody>
</table>

21. APPROVALS

<table>
<thead>
<tr>
<th>Approval</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 508</td>
<td>LISTED E198865 listed for use in U.S.A. (UL 508) and Canada (C22.2 No. 14-95) Industrial Control Equipment</td>
</tr>
<tr>
<td>UL 60950-1</td>
<td>RECOGNIZED E137006 recognized for the use in U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950) Information Technology Equipment, Level 5</td>
</tr>
<tr>
<td>IEC 60950-1</td>
<td>CB Scheme, Information Technology Equipment</td>
</tr>
</tbody>
</table>

22. FULFILLED STANDARDS

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN/IEC 60204-1</td>
<td>Safety of Electrical Equipment of Machines</td>
</tr>
<tr>
<td>EN/IEC 61131</td>
<td>Programmable Controllers</td>
</tr>
<tr>
<td>EN 50178, IEC 62103</td>
<td>Electronic Equipment in Power Installations</td>
</tr>
</tbody>
</table>

Mar. 2019 / Rev. 1.1a Datasheet DS-UB10.245-EN
All parameters are specified at an input voltage of 24V, 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. It is assumed that the input power source can deliver a sufficient output current.
23. USED SUBSTANCES

The unit does not release any silicone and is suitable for the use in paint shops.

The unit conforms to the RoHS directive 2002/96/EC.

Electrolytic capacitors included in this unit do not use electrolytes such as Quaternary Ammonium Salt Systems.

Plastic housings and other molded plastic materials are free of halogens.

The materials used in our production process do not include the following toxic chemicals:
- Polychlorinated Biphenyl (PCB), Pentachlorophenol (PCP), Polychlorinated naphthalene (PCN), Polybrominated Biphenyl (PBB), Polybrominated Biphenyl Oxide (PBO), Polybrominated Diphenyl Ether (PBDE), Polychlorinated Diphenyl Ether (PCDE), Polybrominated Diphenyl Oxide (PBDO), Cadmium, Asbestos, Mercury, Silica

24. PHYSICAL DIMENSIONS AND WEIGHT

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>49mm / 1.93"</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>124mm / 4.88"</td>
<td>Plus height of signal and 12V output connector plug see Fig. 24-1</td>
</tr>
<tr>
<td>Depth</td>
<td>117mm / 4.61"</td>
<td>Plus depth of DIN-rail</td>
</tr>
<tr>
<td>Weight</td>
<td>650g / 1.43lb</td>
<td></td>
</tr>
<tr>
<td>DIN-Rail</td>
<td>Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN-rail height must be added to the depth (117mm) to calculate the total required installation depth.</td>
<td></td>
</tr>
</tbody>
</table>

Electronic files with mechanical data can be downloaded at www.pulspower.com

Mar. 2019 / Rev. 1.1a Datasheet DS-UB10.245-EN
All parameters are specified at an input voltage of 24V, 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. It is assumed that the input power source can deliver a sufficient output current.
25. INSTALLATION NOTES

Mounting:
The power terminal shall be located on top of the unit. An appropriate electrical and fire end-product enclosure should be considered in the end use application.

Cooling: Convection cooled, no forced air cooling required. Do not obstruct air flow!

Installation clearances: 40mm on top, 20mm on the bottom, 5mm on the left and right side are recommended when loaded permanently with full power. In case the adjacent device is a heat source, 15mm clearance are recommended.

Risk of electrical shock, fire, personal injury or death!
Turn power off and disconnect battery fuse before working on the DC-UPS. Protect against inadvertent re-powering. Make sure the wiring is correct by following all local and national codes. Do not open, modify or repair the unit. Use caution to prevent any foreign objects from entering into the housing. Do not use in wet locations or in areas where moisture or condensation can be expected.

Service parts:
The unit does not contain any service parts. The tripping of an internal fuse is caused by an internal fault. If damage or malfunctioning should occur during operation, immediately turn power off and send unit to the factory for inspection!

Wiring and installation instructions:

1. Connect the power supply to the input terminals of the DC-UPS.
2. Connect the battery to the battery terminals of the DC-UPS. It is recommended to install the battery outside the cabinet or in a place where the battery will not be heated up by adjacent equipment. Do not install the battery in airtight housings or cabinets. The battery should be installed according to EN50272-2, which includes sufficient ventilation. Batteries store energy and need to be protected against energy hazards. Use a 30A battery fuse typ ATO® 257 030 (Littelfuse) or similar in the battery path. The battery fuse protects the wires between the battery and the DC-UPS. It also allows the disconnection of the battery from the DC-UPS which is recommended when working on the battery or DC-UPS. Disconnect battery fuse before connecting the battery. Please note: Too small or too long wires between the DC-UPS and the battery can shorten the buffer time or can result in a malfunction of the DC-UPS. Do not use wires smaller than 2.5mm² (or 12AWG) and not longer than 2x1.5m (cord length 1.5m). Avoid voltage drops on this connection.
3. Connect the buffered load to the output terminals of the DC-UPS. The 24V output is placed on top of the unit. The 12V output is placed on bottom of the unit behind the signal plug. The output is decoupled from the input allowing load circuits to be easily split into buffered and non-buffered sections. Noncritical 24V loads can be connected directly to the power supply and will not be buffered. The energy of the battery can then be used in the circuits which require buffering.
4. Install the battery fuse when the wiring is finished.

![Typical wiring diagram](image-url)
26. ACCESSORIES

Battery Modules
Two pre-assembled battery modules with a single 12V battery are available for different buffer times. As an option, the mounting brackets are also available without batteries. This option offers more flexibility in selecting an appropriate battery or can save shipping and logistic costs. See individual datasheets for detailed information.

<table>
<thead>
<tr>
<th></th>
<th>UZK12.071 Standard version</th>
<th>UZK12.261 High current version</th>
<th>VRLA lead-acid maintenance free battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery type</td>
<td>12V, 7Ah</td>
<td>12V, 26Ah</td>
<td></td>
</tr>
<tr>
<td>Service life</td>
<td>3 to 5 years</td>
<td>10 to 12 years</td>
<td>According to EUROBAT guideline</td>
</tr>
<tr>
<td>Dimensions</td>
<td>155x124x112mm</td>
<td>214x179x158mm</td>
<td>Width x height x depth</td>
</tr>
<tr>
<td>Weight</td>
<td>3.2kg</td>
<td>9.9kg</td>
<td></td>
</tr>
<tr>
<td>DIN-Rail mountable</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Order number</td>
<td>UZK12.071</td>
<td>UZK12.261</td>
<td>Battery module</td>
</tr>
<tr>
<td></td>
<td>UZO12.07</td>
<td>UZO12.26</td>
<td>Mounting bracket without battery</td>
</tr>
<tr>
<td></td>
<td>UZB12.071</td>
<td>UZB12.261</td>
<td>Replacement battery only</td>
</tr>
</tbody>
</table>

Fig. 26-1 UZK12.071 Fig. 26-2 UZK12.261

ZM1.WALL Wall / Panel mounting bracket
This bracket is used to mount the DC-UPS units onto a flat surface without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the DC-UPS have to be removed so that the two surface brackets can be mounted.

Fig. 26-3 ZM1.WALL Wall / Panel Mounting Bracket Fig. 26-4 Assembled Wall / Panel Mounting Bracket

Mar. 2019 / Rev. 1.1a Datasheet DS-UB10.245-EN
All parameters are specified at an input voltage of 24V, 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. It is assumed that the input power source can deliver a sufficient output current.
27. APPLICATION NOTES

27.1. BATTERY REPLACEMENT INTERVALS

Batteries have a limited life time. They degrade slowly beginning from the production and need to be replaced periodically. The design life figures can be found in the individual datasheets of the batteries and usually is specified according to the Eurobat guideline or according to the manufacturer’s specifications.

The design life is the estimated life based on laboratory condition, and is quoted at 20°C using the manufacturer’s recommended float voltage condition. According to the Eurobat guideline, design lives have been structured into the following different groups:

- **3 - 5 years:** This group of batteries is very popular in standby applications and in small emergency equipment. This represents a 4 years design life with a production tolerance of ±1 year.
- **6 - 9 years:** This group of batteries is usually used when an improved life is required. This represents a 7.5 years design life with a production tolerance of ±1.5 years.
- **10 - 12 years:** This group of batteries is used when in applications where longest life and highest safety level are required. This represents a 11 years design life with a production tolerance of ±1 year.

A battery failure within the specified design life of the battery usually results in a complete loss of the battery function (broken cell, defect connection, ...) and will be detected and reported by the periodical battery tests which are included in the UB10.245 DC-UPS control unit.

If the operational parameters differ from those which are specified for the design life, an earlier change of the battery might be necessary. The “real life” is called service life and is defined as the point at which the cell’s actual capacity has reached 80% of its nominal capacity. At the end of the service life the capacity degrades much faster, so that a further use of the battery is not recommended.

Temperature effect:
The temperature has the most impact in the service life. The hotter the temperature, the earlier the wear-out phase of the battery begins. The wear-out results in a degradation of battery capacity. See Fig. 27-1 for details.

Effect of discharging cycles
The number as well as the depth of discharging cycles is limited. A replacement of the battery might be necessary earlier than the calculated service life if the battery exceeds the numbers and values of Fig. 27-2.

Other effects which shortens the service life

- Overcharging and deep discharging shortens the service life and should be avoided. Thanks to the single battery concept of the UB10.245, the end-of-charge-voltage can be set very precisely to the required value and thereby avoiding unnecessary aging effects.
- Charge retention is important to get the longest battery life. Stored batteries which are not fully charged age faster then charged batteries. Batteries which are not in use should be recharged at least once a year.
- Excessive float charge ripple across the battery has an effect of reducing life and performance. The UB10.245 does not produce such a ripple voltage. This effect can be ignored when the battery is charged with the UB10.245.

Guidelines for a long battery service life:

- Place the battery in a cool location: E.g. near the bottom of the control cabinet.
- Do not place the battery near heat generating devices.
- Do not store discharged batteries.
- Do not discharge the battery more than necessary. Set buffer time limiter to the required buffer time.
- When choosing the battery capacity, always try to get the next higher capacity than required. The depth of discharge reduces the service life of the battery and limits the number of cycles. See Fig. 27-2.
Example for calculating the service life and the required replacement cycle:

Parameters for the example:

- A 7Ah battery with a design life of 3-5 years is used (e.g. Yuasa battery from the battery module UZK12.071)
- The average ambient temperature is 30°C
- One buffer event consumes approx. 25% of the achievable buffer time.
- One buffer event per day

Calculation:

Ambient temperature influence:
According to Fig. 27-1 curve A, a 2 years service life can be expected for an ambient temperature of 30°C.

Number of discharging cycles: 2 years * 365 cycles = 730 cycles in 2 years.
According to Fig. 27-2, curve C has to be used (only 25% of battery capacity is required). 730 cycles have only a negligible influence in a battery degradation and can be ignored.

Result:
The battery shall be replaced after 2 years.
Please note that the battery degrading begins from the production date (check date code on the battery) which may shorten the replacement intervals.

27.2. PARALLEL AND SERIAL USE

Do not use the DC-UPS in parallel to increase the output power. However, two units of the DC-UPS can be paralleled for 1+1 redundancy to gain a higher system reliability.

Do not use batteries in parallel, since the battery quality test might create an error message.

Do not connect two or more units in series for higher output voltages.

Do not connect two or more units in a row to get longer hold-up times.
27.3. Using the Inhibit Input

The inhibit input disables buffering. In normal mode, a static signal is required. In buffer mode, a signal with a minimum length of 250ms is required to stop buffering. The inhibit is stored and can be reset by cycling the input voltage.

For service purposes, the inhibit input can also be used to connect a service switch. Therefore, the inhibit signal can be supplied from the output of the DC-UPS.

![Wiring example for inhibit input](image)

27.4. Troubleshooting

The LEDs on the front of the unit and relay contacts indicate about the actual or elapsed status of the DC-UPS. Please see also chapter 14.

The following guidelines provide instructions for fixing the most common failures and problems. Always start with the most likely and easiest-to-check condition. Some of the suggestions may require special safety precautions. See notes in section 25 first.

- **Check wiring** LED is on
 - Check correct wiring between the battery and the DC-UPS
 - Check battery fuse. Is the battery fuse inserted or blown?
 - Check battery voltage (must be typically between 7.4V and 15.1V)
 - Check input voltage (must be typically between 22.8V and 30V)
 - Check battery polarity

- **DC-UPS did not buffer**
 - Inhibit input was set
 - Battery did not have enough time to be charged and is still below the deep discharge protection limit.

- **DC-UPS stopped buffering**
 - Buffer time limiter stopped buffering → set buffer time limiter to a higher value
 - Deep discharge protection stopped buffering → use a larger battery, or allow sufficient time for charging the battery
 - Output was overloaded or short circuit → reduce load

- **Output has shut down**
 - Cycle the input power to reset the DC-UPS
 - Let DC-UPS cool down, over temperature protection might have triggered.

- **DC-UPS constantly switches between normal mode and buffer mode**
 - The supplying source on the input is too small and can not deliver sufficient current → Use a larger power supply or reduce the output load